Escapamento do motor do carro

São duas as funções principais do sistema de escapamento: conduzir os gases quentes resultantes do funcionamento do motor até um local em que estes possam ser lançados para a atmosfera sem perigo para os ocupantes do carro e reduzir, por meio de um silencioso – a panela de escapamento – o ruído provocado pela expulsão desses gases.

Os gases originados no motor expandem-se com grande energia, passando para o sistema de escapamento sob forte pressão. Cada vez que os gases passam para a tubulação de escapamento, forma-se uma onda de choque – a um ritmo de milhares de ondas por minuto. Se o ruído do escapamento dos carros não fosse reduzido, ele seria insuportável.

Quando os gases de escapamento abandonam o silencioso, já se expandiram o suficiente para que sua pressão desça até próximo do valor da pressão atmosférica e o ruído seja amortecido.

Se os gases de escapamento não forem totalmente expulsos, a admissão da mistura de gasolina e ar na câmara de explosão será dificultada e a mistura ficará contaminada por gases residuais resultantes da combustão, o que provocará um baixa no rendimento do motor. As tubulações de escapamento são concebidas de maneira a impedir a interferência entre os gases de escapamento expulsos sucessivamente de cada cilindro. Pretende-se assim que os gases passem para o tubo de escapamento o mais livremente possível.

É impossível evitar completamente a existência de contrapressão no sistema de escapamento devido ao efeito restritivo do coletor, dos tubos de escapamento e do silencioso. O sistema é, assim, concebido para silenciar o escapamento com um mínimo de restrição no fluxo dos gases.

Silencioso

O silencioso refreia ou absorve as ondas sonoras, reduzindo o ruído a um nível aceitável e de acordo com as normas legais.

Ilustração mostrando o interior de um siliencioso e o seu funcionamento
Ilustração mostrando o interior de um siliencioso e o seu funcionamento

A velocidade dos gases é normalmente reduzida por defletores, ou placas metálicas, existentes no interior do silencioso e que se destinam a afrouxar e dificultar a ação das ondas sonoras. O silencioso perfurado ou de absorção, no qual os gases passam, através de furos abertos num tubo, para o material que absorve o som, é uma variante deste sistema freqüentemente utilizada em automóveis de competição para proporcionar uma maior potência aos motores, já que os furos não dificultam tanto a saída dos gases como os defletores.

Os silenciosos e os sistemas de escapamento são normalmente fabricados com tubos e chapa de aço macio. A exposição constante aos grãos de areia da estrada, aos materiais corrosivos, ao barro e à lama reduz a duração de um sistema de escapamento tipo médio a pouco mais que um ou dois anos. Porém, a utilização de aço aluminizado ou, melhor ainda, de aço inoxidável prolonga a duração de um sistema de escapamento.

Os silenciosos e a tubulação do sistema de escapamento enferrujam-se, quer interna ou externamente. Cada litro de gasolina queimada produz 1,1 litros de água – contendo sais de chumbo e ácidos -, que passa para o sistema de escapamento sob a forma de gás ou de vapor. Se o silencioso ou o tubo de escapamento estiverem frios, como sucede no primeiro arranque do dia, estes elementos corrosivos condensam-se nas superfícies interiores do sistema de escapamento, onde atuam como ácidos fracos que acabam por atacar o metal. Assim cada vez que um automóvel arranca com o motor frio, dá-se uma pequena corrosão interior.

É por esta a razão que um automóvel utilizado em pequenos trajetos necessita de substituições mais vezes no sistema de escapamento do que outro utilizado normalmente em longos percursos.

Ilustração mostrando o fluxo de ar em torno de um carro em movimento e por que os gases de escapamento podem entrar no porta mala se estiver aberto
Ilustração mostrando o fluxo de ar em torno de um carro em movimento e por que os gases de escapamento podem entrar no porta mala se estiver aberto

Quando um automóvel de dimensões médias circula com o porta-malas aberto, as fumaças de escapamento podem penetrar, por turbulência, no interior do veículo e causar perda de consciência ao motorista. Deve-se, portanto, manter fechado o porta-malas ou a porta traseira – no caso de um automóvel de cinco portas – quando em movimento. Se tal não for possível, é necessário dirigir com as janelas laterais abertas para assegurar a renovação do ar.

Os gases de escapamento incluem monóxido de carbono, gás inodoro, mas tóxico, e anidrido carbônico, que pode causar sufocação. Um escapamento de gás próximo de uma tubulação de escapamento quente pode ainda causar um incêndio. Os escapamentos de gás no sistema de escapamento do veículo não devem, portanto, serem menosprezados.

Os gases de escapamento incluem monóxido de carbono, gás inodoro, mas tóxico, e anidrido carbônico, que pode causar sufocação. Um escapamento de gás próximo de uma tubulação de escapamento quente pode ainda causar um incêndio. Os escapamentos de gás no sistema de escapamento do veículo não devem, portanto, serem menosprezados.

Escapamento com fumaças

A presença de fumaça negra nos gases de escapamento ou de uma camada de fuligem no tubo de escapamento indicam ser a mistura demasiadamente rica.

A saída de fumaça azulada, principalmente ao acelerar, após uma descida com o automóvel engrenado, indica a penetração de óleo nas câmaras de explosão, através dos anéis dos pistões ou das guias das válvulas.

Catalizador

O catalisador é uma peça formada por núcleo cerâmico ou metálico que transforma grande parte dos gases tóxicos do motor em gases inofensivos, através das reações químicas ocorridas dentro deste componente.

O catalisador localiza-se no sistema de escapamento, depois do coletor de gases de escape e próximo ao motor, para melhor aproveitar a temperatura decorrente da combustão. O termo conversor catalítico designa genericamente um reator metálico instalado no sistema de escapamento. Este reator, de aço inoxidável, contém o catalisador propriamente dito, que é constituído de uma colmeia cerâmica ou metálica (monolito) impregnada com substâncias ativas. Essa colmeia é formada por milhares de minúsculos canais (células), por onde passam os gases poluentes. As paredes destes canais são recobertas com óxidos de metais, que criam uma superfície de contato cuja área é equivalente a 2 campos de futebol.

Externamente, o monolito é envolvido por uma manta amortecedora destinada a protegê-lo contra vibrações e choques. As substâncias ativas são o óxido de alumínio, metais preciosos cataliticamente ativos (Pd, Pt e Rh) e promotores (substâncias que aumentam a ação catalítica dos metais preciosos). Somente as substâncias ativas são responsáveis pelos efeitos catalíticos; a colmeia cerâmica ou metálica serve apenas como material – suporte.

Figura mostrando o interior de um catalisador e suas partes componentes
Figura mostrando o interior de um catalisador e suas partes componentes

A colmeia cerâmica consiste de corderita. Este material de magnésio – alumínio – sílica é distinto particularmente pela sua alta resistência à temperatura. A colmeia metálica consiste de uma liga especial, a qual é enrolada e soldada através de uma técnica específica, formando o suporte metálico.

A espessura da parede desta chapa de aço ferrítico, altamente resistente ao calor, é de aproximadamente 0,04 a 0,07 mm.

Substâncias catalíticas

O real efeito de um catalisador é determinado por suas substâncias cataliticamente ativas impregnadas. O monolito cataliticamente inativo é impregnado, através de um complexo processo químico de produção, com uma camada de óxido denominada camada de preparação superficial.

Os metais preciosos são então distribuídos sobre esta camada. A camada “ativa” é constituída de óxidos de alumínio e promotores, isto é, aditivos que aumentam o efeito catalítico dos metais preciosos. O óxido de alumínio amplia a área superficial especifica a valores que excedem 20.000 mt quadrados por litro de volume do catalisador. Os metais preciosos, – platina, ródio e paládio – são usados 1,5 g em média, individualmente ou de forma combinada, dependendo do projeto do catalisador, o qual é desenvolvido em estreita cooperação com os fabricantes de veículos, propiciando uma vida útil do produto, de no mínimo 80.000 km.

Embora o catalisador seja muito bom no controle de emissões, quando o motor e seus sistemas relacionados não estiverem funcionando adequadamente, haverá ainda um aumento de emissões indesejáveis do escapamento. Estas emissões podem ser analisadas para fins de diagnóstico.

Hidrocarbonetos (HC): Os hidrocarbonetos nos informam quanto combustível disponível não foi queimado. Baixas emissões de HC são uma boa indicação de que todo o combustível está sendo queimado. Altas emissões de HC estão freqüentemente relacionadas com problemas no sistema de ignição, tais como falha de combustão ou distribuição imprópria. Pode também ser devido à baixa compressão, vazamentos de vácuo, mistura incorreta do ar/combustível ou catalisador ineficiente.

Dióxido de carbono (CO2): O dióxido de carbono é uma medida da eficiência da combustão. As leituras CO2 se elevarão quando a proporção ar/combustível estiver em sua mais alta eficiência. O CO2 adicional é produzido pelo catalisador.

Oxigênio (O2): O oxigênio é uma outra indicação da proporção da mistura ar/combustível. Se houver uma condição pobre, as leituras se elevarão rapidamente. Vazamento de vácuo, sistemas de distribuição de combustível defeituosos e falha de combustão podem causar níveis altos de O2.

Óxido de nitrogênio (NOx) : Os óxidos de nitrogênio indicam altas temperaturas de combustão. Isto pode resultar de uma condição pobre, mas geralmente deve-se a uma falha do sistema EGR. As leituras de NOx altas podem também ser causadas por um catalisador que não esteja funcionando eficientemente.

Gases de escape

O combustível consumido pelo motor de ciclo otto apresenta uma composição química diferente daquele utilizado pelo motor diesel. Entretanto, ambos são compostos, na maior parte, por carbono (C) e hidrogênio (H).

A proporção de substâncias contidas nos gases do escapamento
A proporção de substâncias contidas nos gases do escapamento

Sob condições ideais esses combustíveis são transformados em energia mecânica, de modo a restar apenas dióxido de carbono (CO²) e água (H²O), dois elementos inofensivos à vida. Porém, como em todo processo real, a combustão de um motor não resulta em transformação completa das substancias envolvidas, surgindo novos compostos no gás do escapamento. No caso dos motores de ciclo otto trata-se, principalmente, de monóxido de carbono (CO), hidrocarbonetos (HC) e óxidos de nitrogênio (NOx).

Assim, os gases emitidos pelo automóvel compõem-se de 99% de elementos inofensivos. Apenas a parte de aproximadamente 1% é composta de parcelas capazes de agredir o meio ambiente.

Monóxido de carbono

Resultante da queima incompleta do combustível, o monóxido de carbono (CO) é uma substância que atua no sangue, reduzindo sua oxigenação. Pode afetar a saúde, especialmente em altas concentrações e em áreas confinadas, inclusive pode provocar a morte. As normas do Proconve (programa nacional de controle das emissões veiculares) estabelecem limites para a emissão de monóxido de carbono para os veículos automotores.

Óxido de nitrogênio

O óxido de nitrogênio (NOx) é uma combinação de nitrogênio e oxigênio que não aparece em condições normais. É formado em razão da alta temperatura na câmara de combustão do motor. Foi estabelecido um controle de emissões de óxidos de nitrogênio, com o propósito de limitar o dióxido de nitrogênio (NO²) no meio ambiente. As emissões de NOx contribuem, mas não de forma determinante, na formação do dióxido de nitrogênio. Mas o empenho da industria automotiva em reduzir o consumo de combustível leva a um aumento dos óxidos de nitrogênio, o que torna complexa a tarefa de otimização dos motores.

Hidrocarbonetos

Hidrocarbonetos é combustível não queimado, ou parcialmente queimado, expelido pelo motor, principalmente em condições nas quais se trabalha com mistura rica (com menos ar do que o ideal) ou muito pobre (excesso de ar) que comprometem a combustão. Geralmente, os hidrocarbonetos não são considerados como problema no estado em que saem do veiculo. Alguns tipos, porém, reagem na atmosfera, provocando a formação do smog (camada de poluição na atmosfera)..Algum teor de hidrocarbonetos é sempre verificado em determinadas situações, como fase fria de funcionamento do motor, quando a parede do cilindro inibe a combustão total, resultando num aumento do teor de HC. A legislação também estabelece limites sobre emissão de hidrocarbonetos pelos veículos automotores. Sua presença nos gases de escape é medida em partes por milhão (ppm), ou seja: uma leitura de 100 ppm indica que em cada milhão de partes do gás existem cem de hidrocarbonetos.

Coletores – expulsão dos gases provenientes do motor

O sistema de escapamento conduz os gases quentes, resultantes da combustão, desde o motor e através do coletor, tubo de escapamento e silencioso, para o tubo de saída, que o lança na atmosfera. Durante este processo, o silencioso por meio de redução, deflecção ou absorção das ondas sonoras, diminui o ruído originado pela descarga, através da abertura de escapamento, dos gases provenientes da câmara de explosão.

Os tipos de coletores de escapamento ou descarga
Os tipos de coletores de escapamento ou descarga

Deixe um comentário

O seu endereço de e-mail não será publicado.